Abstract

The four-electron transfer process involved in anodic oxygen evolution reaction (OER) of electrocatalytic water splitting causes the sluggish kinetics and significantly limiting the efficiency of energy conversion. It's urgent to explore low-cost, efficient and stable electrocatalysts for OER. In the work, we design the nitrogen and molybdenum co-doped CoP with nanohoneycombs structure on three-dimensional (3D) nitrogen-doped porous graphene (N/Mo–CoP@NPG) as an efficient OER electrocatalyst. The N/Mo–CoP@NPG delivers the current density of 10 mA cm−2 at a low overpotential value of 201 mV in 1.0 M KOH, meanwhile the electrocatalytic activity shows no obvious degradation after 50 h. The NPG substrate provides plentiful ligaments for growth of N/Mo–CoP nanohoneycombs and 3D network for rapid electronic transfer. Additionally, doping N and Mo atoms into CoP synergistically modifies the micromorphology and electronic structure, benefiting the electrocatalytic ability. This work offers a promising strategy to improve the electrocatalytic activity of transition metal phosphides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.