Abstract

Sequential adsorption of N atoms on a MgO(1 0 0) supported Fe 7 cluster is studied using a density functional approach. For the number of adsorbates varying between one and six, the most favorable adsorption geometries are determined and the corresponding potential energy diagram is given. Up to five N atoms are found to bind strongly to the oxide supported cluster, with binding energies ranging from 0.98 to 1.11 eV per N atom. When a sixth N atom is added to the Fe 7/ MgO(1 0 0) cluster with five preadsorbed N atoms, the potential energy sharply increases due to the strong repulsive interaction between N adsorbates at short distances. The MgO(1 0 0) support plays an important role in increasing the binding energy of the adsorbed species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.