Abstract

Despite the importance of nitrogen (N) deposition for soil biogeochemical cycle, how N addition affects the accumulation of humic substances in decomposing litter still remains poorly understood. A litterbag experiment was conducted to assess the potential effects of N addition (0 kg·N·ha−1·year−1, 20 kg·N·ha−1·year−1 and 40 kg·N·ha−1·year−1) on mass remaining and humification of two leaf litter (Michelia wilsonii and Camptotheca acuminata) in a subtropical forest of southwestern China. After one year of decomposition, litter mass was lost by 38.1–46.5% for M. wilsonii and 61.7–74.5% for C. acuminata, respectively. Humic substances were declined by 12.1–23.8% in M. wilsonii and 29.1–35.5% in C. acuminata, respectively. Nitrogen additions tended to reduce mass loss over the experimental period. Moreover, N additions did not affect the concentrations of humic substances and humic acid in the early stage but often increased them in the late stage. The effect of N addition on the accumulation of humic substances was stronger for C. acuminate litter than in M. wilsonii litter. Litter N and P contents showed positive correlations with concentrations of humic substances and fulvic acid. Our results suggest that both litter quality and season-driven environmental changes interactively mediate N impacts on litter humification. Such findings have important implications for carbon sequestration via litter humification in the subtropical forest ecosystems experiencing significant N deposition.

Highlights

  • Organic matter accumulated at the surface of forest soils as humus is of primary importance to long-term site fertility and productivity in forest ecosystems[1]

  • N additions tended to increase litter mass remaining over the experimental period (Fig. 1)

  • analysis of variance (ANOVA) analysis showed that the effect of N treatment on mass remaining was dependent on deposition period (Table 1)

Read more

Summary

Introduction

Organic matter accumulated at the surface of forest soils as humus is of primary importance to long-term site fertility and productivity in forest ecosystems[1]. The annual wet N deposition in this study site is 36.2 kg N·ha−1 16, which is much higher than the average value of atmospheric N deposition in China (18.0 kg N ha−1)[17]. This region is considered as a special natural laboratory for N deposition studies of N-rich ecosystem. Understand the effects of rising N deposition on soil organic matter, a field experiment was conducted to explore the potential influences of N additions on the humification of two foliar litter with contrasting quality (Michelia wilsonii and Camptotheca acuminata) in the high-N deposition subtropical ecosystem. We hypothesize that (1) N additions would stimulate litter humification and such effect could be greater in high-quality litter; (2) season-associated conditions could mediate the response of litter humification to N additions

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.