Abstract

In potato, high levels of nitrogen (N) can lead to excessive vegetative growth at the expense of tuber development, resulting in lower yield and poor-quality tubers. We found that Solanum tuberosum CLE4 (StCLE4) is expressed most strongly in the roots grown in N-rich media, and it positively regulates potato root growth under N-deficient conditions. We noted that StCLE4 functions as a negative regulator of normal shoot apex development similar to CLV3 in Arabidopsis. Transcriptomic analysis revealed that overexpression of StCLE4 resulted in the repression of the StIT1 gene, a regulator of potato tuber initiation. StCLE4-overexpressing stolons were converted into branches, that were similar to a mild phenotype of the it1 (identity of tuber 1) mutant. We also found that NIN-like proteins, key regulators of nitrate signaling bind to the regulatory sequence of StIT1 in a yeast one-hybrid assay. Taken together, our findings suggest that StCLE4 regulates shoot, root, and stolon growth in potato.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call