Abstract

N accumulation and natural 15N abundance in three legumes (groundnuts, cowpeas, and soybeans) and in two cereals (sorghum and maize) were investigated over two seasons in Alfisols with and without N fertilization. Using the N uptake and natural 15N abundance of non-nodulating plants as the indication of N derived from soil and fertilizer, the per cent N derived from atmospheric N2 was calculated for nodulated plants. In the first experiment, the groundnut genotype contained 85% atmosphere-derived N, but the percentage decreased with N application. Estimates of atmosphere-derived N by the N-difference and 15N-abundance techniques gave identical results. The percentages of atmosphere-derived N estimated by the two methods at different stages of groundnut growth were also similar. In the second experiment, atmosphere-derived N was estimated in plants grown with 0–200 kg ha-1 applied N. The estimated atmosphere-derived N ranged from 42% to 61% for groundnuts from 33% to 77% for cowpeas, and from 24% to 48% for soybeans, depending on the amount of N applied. Inoculation with a Bradyrhizobium strain increased the percentage of atmospherederived N in soybean plants grown without any fertilizer N. The natural 15N abundance of sorghum and maize was very close to that of the non-nodulating groundnut, suggesting that these cereals can be used as reference plants in the estimation of atmosphere-derived N by the natural 15N-abundance method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call