Abstract

BackgroundInfertility is a global health burden which affect more than 15% of couples’ population. An impaired hormonal balance, oxidative stress and alteration in the physiological function of the reproductive organ are factors leading to infertility. The present study investigated the protective role of methanolic leaf extract of Vernonia amygdalina (MLVA) against Nitrobenzene-induced oxidative testicular damage and hormonal imbalance in rats. Thirty sexually active male wistar rats were sorted into five groups, each group containing six rats. Group I received distilled water while 100 mg/kg bw of Nitrobenzene was administered to groups (II, III, IV and V) to induce testicular damage and hormonal imbalance. Group III and IV were treated with oral administration of 200 mg/kg bw and 400 mg/kg bw of MLVA respectively and group V with vitamin E for 14 days.ResultsNitrobenzene-treated rats showed significant (P < 0.05) decrease in the body weight gain, testis and epididymis weights. However, upon administration of MLVA or vitamin E, these changes were significantly reversed in Nitrobenzene-treated rats. Also, Nitrobenzene significantly (P˂0.05) induced endocrine disruption as shown by decreased activities level of serum Thyroid stimulating hormone (TSH), luteinizing hormone (LH), follicle stimulating hormone (FSH), prolactin, testosterone, triiodothyronine (T3), and tetraiodothyronine (T4). Administration of Nitrobenzene also induced oxidative damage as shown by increased level of testicular lipid peroxidation (MDA), and decreased levels of glutathione (GSH). Histological studies of the testes revealed mild congestion of interstitial vessels and oedema in rats administered Nitrobenzene only.ConclusionTaken together, MLVA obliterated the adverse effects of Nitrobenzene on the antioxidant enzymes, markers of testicular oxidative damage, endocrine and testicular structure in rats.

Highlights

  • Infertility, a global health burden, is the failure of a sexually active, non-contracepting couple to conceived after 12 months of regular unprotected intercourse [1]

  • Many of these chemicals can interfere with the development of the endocrine system and of the organs that respond to endocrine signals in organisms indirectly exposed during prenatal and/or early postnatal life; effects of exposure during development are permanent and irreversible [35]

  • Results in this study demonstrated that exposure of Nitrobenzene caused significant decrease in testicular and epididymal weights in rats treated with nitrobenzene alone (Table 1 and Fig. 1)

Read more

Summary

Introduction

Infertility, a global health burden, is the failure of a sexually active, non-contracepting couple to conceived after 12 months of regular unprotected intercourse [1]. A group of xenobiotics known as endocrine disruptors may alter the physiological activities of biological systems, mediate hormonal balance, and/or adversely influence biological functions and activities of organs that hormones control or modulate, especially in reproductive systems [7]. Oxidative stress and alteration in the physiological function of the reproductive organ are factors leading to infertility. The present study investigated the protective role of methanolic leaf extract of Vernonia amygdalina (MLVA) against Nitrobenzene-induced oxidative testicular damage and hormonal imbalance in rats. Group I received distilled water while 100 mg/kg bw of Nitrobenzene was administered to groups (II, III, IV and V) to induce testicular damage and hormonal imbalance. Group III and IV were treated with oral administration of 200 mg/kg bw and 400 mg/kg bw of MLVA respectively and group V with vitamin E for 14 days

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.