Abstract

Nitric oxide (NO) is a signalling molecule involved in several physiological processes, in both prokaryotes and eukaryotes, and nitrite is being recognised as an NO source particularly relevant to cell signalling and survival under challenging conditions. The "non-respiratory" nitrite reduction to NO is carried out by "non-dedicated" nitrite reductases, making use of metalloproteins present in cells to carry out other functions, such as several molybdoenzymes (a new class of nitric oxide-forming nitrite reductases). This minireview will highlight the physiological relevance of molybdenum-dependent nitrite-derived NO formation in mammalian, plant and bacterial signalling (and other) pathways. The mammalian xanthine oxidase/xanthine dehydrogenase, aldehyde oxidase, mitochondrial amidoxime-reducing component, plant nitrate reductase and bacterial aldehyde oxidoreductase and nitrate reductases will be considered. The nitrite reductase activity of each molybdoenzyme will be described and the review will be oriented to discuss the feasibility of the reactions from a (bio)chemical point of view. In addition, the molecular mechanism proposed for the molybdenum-dependent nitrite reduction will be discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.