Abstract

In the presence of nitrite ions (NO(2)(-)) in phosphate buffer (pH 7. 4) and at 37 degrees C, dopamine was oxidized by a variety of hydrogen peroxide (H(2)O(2))-dependent enzymatic and chemical systems to give, in addition to black melanin-like pigments via 5, 6-dihydroxyindoles, small amounts of the potent neurotoxin 6-hydroxydopamine (1) and of 6-nitrodopamine (2), a putative reaction product of dopamine with NO-derived species. Treatment of 0. 5 or 1 mM dopamine with horseradish peroxidase (HRP) or lactoperoxidase (LPO) in the presence of 1 or 2 mM H(2)O(2) with NO(2)(-) at a concentration of 0.5-10 mM resulted in the formation of 1 and 2 in up to 8 and 2 microM yields, respectively, depending on the substrate concentration and the NO(2)(-):H(2)O(2) ratio. Nitration and hydroxylation of 0.1 mM dopamine was observed with 1 mM NO(2)(-) using HRP and the D-glucose/glucose oxidase system to generate H(2)O(2) in situ. In the presence of NO(2)(-)-, Fe(2+)-, or Fe(2+)/EDTA-promoted oxidations of dopamine with H(2)O(2) also led to the formation of 1 and 2, the apparent product ratios varying with peroxide concentration and the partitioning of the metal between EDTA and catecholamine chelates. In the presence of NO(2)(-), Fe(2+)-promoted autoxidation of dopamine gave 2 but no detectable 1. When injected into the brains of laboratory rats, 2 caused sporadic behavioral changes, indicating that it could elicit a neurotoxic response, albeit to a lower extent than 1. Model experiments using tyrosinase as an oxidizing system and mechanistic considerations suggested that formation of 2 does not involve reactive nitrogen radicals but results mainly from nucleophilic attack of NO(2)(-) to dopamine quinone. Generation of 1, on the other hand, may be derives from different H(2)O(2)-dependent pathways. Collectively, these results outline a complex interplay of NO(2)(-)- and peroxide-dependent oxidation pathways of dopamine, which may contribute to impair dopaminergic neurotransmission and induce cytotoxic processes in neurodegenerative disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.