Abstract

Achieving nitrite accumulation still remains challenging for efficient short-cut biological nitrogen removal in municipal wastewater treatment. To tackle the problem of insufficient carbon in incoming wastewater for biological nutrient removal, a return activated sludge (RAS) fermentation method has been proposed and demonstrated to enable producing supplemental volatile fatty acids (VFAs) and enhance biological phosphorus removal via sludge cycling between mainstream and a sidestream anaerobic reactor. However, the impacts of long anaerobic exposure with acetate on nitrifying bacteria, known as the aerobic chemoautotrophic microorganisms, remains unexplored. In this study, the activated sludge underwent a cyclic anaerobic treatment with the addition of acetate (Ac), the effects on nitrification rate, abundance and microdiversity of nitrifying communities were comprehensively assessed. Firstly, batch activity tests proved the direct addition of high acetate (above 1000 mg/L) could cause inhibition on the nitrification rate, moreover, the inhibitory effect was stronger on nitrite-oxidizing bacteria (NOB) activity than that of ammonia-oxidizing bacteria (AOB). Then, a sequencing batch reactor (SBR) was applied to test the nitrogen conversion performance for low-strength ammonium wastewater. Nitrite accumulation could be achieved via the cyclic anaerobic exposure with 1000–5000 mg Ac/L. The maximum effluent concentration of nitrite was 40.8 ± 3.5 mg N/L with nitrite accumulation ratio (NAR) of 67.6 ± 3.5%. The decrease in NOB activity (72.7%) was greater than AOB of 42.4%, promoting nitrite accumulation via nitritation process. Furthermore, the cyclic anaerobic exposure with acetate can largely reshape the nitrifying communities. As the dominant AOB and NOB, the abundance of Nitrosomonas and Nitrospira were both decreased with species-level microdiversity in the nitrifying communities. However, the heterotrophic microorganism, Thauera, were found to be highly enriched (from 0 to 17.3%), which may act as the potential nitrite producer as proved by the increased nitrate reduction gene abundance. This study can provide new insights into achieving mainstream nitrite accumulation by involving sidestream RAS fermentation towards efficient wastewater treatment management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call