Abstract

Ferrate (Fe(VI)), a promising water treatment oxidant, can be used for micropollutant abatement or disinfection byproduct mitigation. However, knowledge gaps remain concerning the interaction between Fe(VI) and dissolved organic matter structures, notably primary amines. This study investigated degradation kinetics and products of several aliphatic primary amines by Fe(VI). Primary amines showed appreciable reactivity toward Fe(VI) (2.7–68 M−1s−1 at pH 7–9), ranking as follows: benzylamine > phenethylamine > phenylpropylamine > methylamine ≈ propylamine. Nitriles were the main oxidation products of the primary amines, with molar yields of 61–103%. Minor products included aldehydes, carboxylic acids, nitroalkanes, nitrite, nitrate, and ammonia. The buffering conditions were important. Compared to phosphate, borate enhanced the reactivity of the amines and shifted the products from nitriles to carbonyls. An evaluation of the effect potency of some cyano-compounds by an in vitro bioassay for oxidative stress response and cytotoxicity suggested that non-halogenated nitriles are unlikely to pose a significant threat because they were only toxic at high concentrations, acted as baseline toxicants and did not cause oxidative stress, unlike halonitroalkanes or halonitriles. The formation of non-halogenated nitriles is preferable to the formation of nitroalkanes arising from the ozonation of primary amines (other than amino acid N-terminals) because, during chlorination, nitriles remain unreactive while nitroalkanes lead to potent halonitroalkanes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call