Abstract

This study compared the nitrification potential of two separate Waste Stabilisation Ponds (WSPs) operating under differing physical and chemical conditions. In order to probe the nitrification potential of each system, the oxidation of ammonium and also the intermediate product nitrite was assessed using both in situ and laboratory micro-scale incubations. The role of sediment in determining the nitrification potential of the two WSPs was also investigated. Results from laboratory microcosm incubations revealed a competent and strikingly similar nitrification potential for both WSPs in spite of their differing nitrogen and organic loadings, and also suggested a significant role for sediment in WSP nitrogen cycling. Results from in situ field experiments identified biomass uptake to be the dominant nitrogen removal mechanism in natural pond environments. Other aspects of WSP nitrogen cycling are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call