7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1061/jeegav.0001297
Copy DOIPublication Date: Jun 1, 1982 | |
Citations: 1 |
The surface reaction model for the mechanism of mass transfer-metabolism in the fixed-film nitrification process is investigated and discussed for the design of trickling filter systems and rotating biological contactor (RBC) systems. Two experimental studies are performed. The first study, using a stationary fixed-film reactor to simulate the trickling filter process, reveals that the surface reaction kinetics follow a pseudo-homogeneous model. The second study, using a bench-scale RBC unit, indicates that the pseudo-homogeneous model is also applicable to the rotating fixed-film process. The effective slime thickness of an RBC system can be estimated from this model by locating the optimum NH3-N removal rotating speed and finding the corresponding liquid film thickness at that rotating speed.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.