Abstract

AbstractNitrogen (N) fertilizer use efficiency (NUE) in flooded paddy fields is relatively low. Many N fertilizer management options have been proposed to enhance NUE and minimize environmental damage. However, few investigations are focusing on the role of the characteristics of soil N transformations in regulating NUE and N losses in paddy fields. In this study, we test the role of soil N transformations on NUE and N losses under rice growth conditions in two paddy soils collected from Jiangxi (JX) and Sichuan (SC) in China. The N recoveries of applied 15N either as nitrate or ammonium in plant and soil, and N losses estimated by 15N balance were investigated in rice pot experiments using a 15N tracing technique. The results showed that gross nitrification rates in soil collected from JX were much lower than those in soils collected from SC either at 60% water holding capacity (WHC) or rice growth (flooding) conditions, which could be due to the difference in soil pH. The ‐N concentration in soil solution was maintained at a relatively high level for a long time period after N fertilizer application in the JX soil (41 d) compared to the SC soil (26 d), caused by different nitrification rates owing to different soil pH. The 15N uptake by rice in the JX soil (29–78%) was always significantly higher than that in the SC soil (22–54%), while N losses from the plant–soil system in the JX soil (17–21%) were always significantly lower than those from the SC soil (20–34%) at the same rice growth stage in the labeled 15N ammonium treatment. However, there were no significant differences in 15N uptake by rice and N losses in applied treatment between the two studied soils. These results indicate that nitrification, not denitrification, was the key process determining NUE and N losses in paddy soils. The results of the N application gradient experiment also indicated that higher amounts of N fertilizer should be applied for the same amount of N uptake, however, this caused higher N losses, in soils characterized by high nitrification rate (e.g., the alkaline soil). Results highlighted that soil N transformations in particular nitrification rate provided a very good guideline for an optimized N management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call