Abstract

The nitrification process in different sections of the sponges remains unresolved, despite several studies on the nitrogen cycling pathways in the tissues of temperate and Arctic sponges. In this study, the abundance, diversity and activity of the associated nitrifying organisms in intracellular, intercellular, extracellular and cortex of a tropical intertidal sponge, Cinachyrella cavernosa, were investigated using most probable number, next-generation sequencing and incubation method, respectively. The nitrification rate and the abundance of nitrifying bacteria showed significant difference among different sections. The nitrification rate in C. cavernosa was 2–12× higher than the reported values in other sponge species from temperate and Arctic regions. Nitrification rate in sponge cortex was 2× higher than in intercellular and extracellular sections. Ammonium and nitrite oxidisers ranged from 103 to 104 CFU g−1 in the sponge with a high number of ammonium and nitrite oxidisers in the cortex. Nitrifiers belonging to Nitrosomonas, Nitrospira, Nitrospina, Nitrobacter and Nitrosopumilus were present in different sections of the sponge, with nitrifying archaea dominating the intracellular section and nitrifying bacteria dominating other sections. This study reports for the first time the nitrification inside the sponge cells. The study also suggests that the intertidal sponge, C. cavernosa, harbours metabolically active nitrifiers in different sections of the sponge body with different rates of nitrification. Thus, nitrifiers play an important role in ammonia detoxification within the sponge and also contribute to the nitrogen budget of the coastal ecosystem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.