Abstract
Plasma Focus (PF) discharge is a pulsed plasma producing discharge that generates high temperature and high density plasma for a short duration. PF devices are known to emit intense ion beams pulses of characteristic energy in the keV to a few MeV range, in a time scale of tens of nanoseconds. We have previously investigated the ion flux and energy spectrum of ion beams emitted from a low energy PF, operating at 20 kV, with 1.8 kJ stored energy. It was observed that the ion beams have wide range of energy and intensity spectra with a clear angular anisotropy. Due to the wide range of ion energy and intensity spectra PF has become a subject of current interest for its applications in material sciences including surface modification and thin film deposition. The purpose of this study is the formation of titanium nitride (TiN) thin film and to investigate the structural properties of the TiN thin films in terms of PF angular positions. Substrates like Ti and Ti/Si were nitrided in a 1.8 kJ PF device at different angular positions with respect to the PF axis in order to correlate their surface properties with ion beam parameters. Preliminary characterizations of the ion implanted substrates have been conducted, using SEM, EDX and XRD. Our results indicate the formation of nanocrystalline TiN thin film only in certain angular positions. Angular dependency of the surface morphology was observed, which shows that the surface features strongly depends on ion beam energy and flux. With increasing angular positions, a reduction in the deposition rate and the sputter rate is observed. A pronounced nanostructured surface is only observed at the axis of the pinched plasma column, indicating the dominant role of sputtering and perhaps melting and fast re-crystallization of the surface in creating the nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.