Abstract

A study has been made of nitriding of interstitial free (IF) steel in the potassium-nitrate salt bath at temperatures ranging from 400 to 650°C. The salt is decomposed to generate nitrogen and oxygen. Nitrogen diffuses into steel, or steel is nitrided, while oxygen reacts on steel surface to form the oxide scale. The oxide scale thickness is much smaller than the nitriding thickness. Most of nitrogen resides in steel as a form of interstitial solid-solution. For nitriding at higher temperatures, nitride precipitates (γ'-Fe 4 N and ζ-Fe 2 N) exist mostly in grain boundaries and partly in grains of the steel. The nitrate nitriding gives rise to much larger nitriding depth than other nitriding methods at similar nitriding temperature and time. The nitrate nitriding of steel substantially increase its tensile strength as well as hardness, e.g., an IF steel specimen nitrided at 650°C for 1.5 h shows a tensile strength of 916 MPa, which is 2.2 times higher than that of non-nitrided IF steel specimen, and an elongation of 20% at 70°C. Severe serrations are observed in flow curves of nitrided steel specimens, mainly due to dynamic strain aging that occurs because of interaction between dissolved nitrogen and moving dislocations. The effective diffusion coefficient of nitrogen D N obtained from the nitriding data, D N =D 0 expl(-Q/RT) with D 0 =3.789x10 -7 m 2 .s -1 and Q=76.62 kJ mol -1 , is approximately the same as that for diffusion of nitrogen in α-iron.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.