Abstract

In the present study, bipolar plasma based ion implantation and deposition (bipolar PBII) was used for plasma nitriding of high speed steel (SKH2), and the effects of the treatment parameters (positive pulse voltage, negative pulse voltage, treatment pressure, treatment time, and precursor gases) on the nitriding process were investigated. The hardness, roughness, and depth of nitride layer were also measured. The adhesion strength of diamond-like carbon (DLC) films coated on the nitride substrate was evaluated by carrying out Rockwell indentation and microscratch tests. Nitriding by bipolar PBII was achieved in the combining of two effects: nitrogen ion implantation by applying a high negative pulse voltage and thermal diffusion of nitrogen atoms under the application of a high positive pulse voltage. However, a very high voltage negative pulse caused surface roughening of the nitride layer. Application of a high positive pulse voltage during nitriding was found to be effective in promoting the thermal diffusion of the implanted nitrogen atoms. Effective nitriding could be achieved under the following conditions: high positive pulse voltage, low negative pulse voltage, high nitrogen gas pressure, and addition of hydrogen to the precursor gas. The adhesion strength of the DLC films on the SKH2 substrate was well improved after nitriding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.