Abstract
Nitriding treatment can improve the surface properties of workpieces, thus increasing the service life of the workpiece. The depth of nitriding layer is not only one of the important indexes for evaluating the nitriding effect, but also an important factor affecting the end-use performance of the workpiece. While the existing hardness and metallographic methods cannot meet the needs for non-destructive testing of nitriding layer depth in shaft parts. Therefore, a method using non-linear ultrasonic testing technology is proposed for non-destructive evaluation of nitriding layer depth. In this study, 1045 steel shaft specimens with different nitriding layer depths were prepared by a liquid salt bath nitriding method. The total depth of the nitriding layer was measured using a microhardness tester, and metallographic microscopy was applied to observe microstructure changes before and after nitriding treatment. With the proposed non-destructive method, the longitudinal critically refracted (LCR) wave mixing detection model was established and the ultrasonic nonlinear coefficients were used for characterizing the nitrided layer depths. Experimental results show that the LCR wave sum frequency (LCRWSF) detection model better characterizes the nitriding layer depth of 1045 steel and has higher sensitivity. As a result, the LCRWSF model is more suitable to efficiently estimate the nitrided layer depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.