Abstract

Abstract An iron-based intermetallic FeAl alloy was gas nitrided under well-defined conditions, and the influences of the process parameters, i. e., time, temperature, and nitriding potential on the layer formation, were investigated. Microstructural, morphological, and chemical characterization of the nitride layer was performed by means of glow discharge optical spectroscopy, electron probe microanalysis, scanning electron microscopy, X-ray diffraction, internal-stress measurement, hardness– depth profiles, and indentation fracture mechanics. Pin-on-disk tests were carried out to investigate the load-bearing capacity and wear resistance of the nitride layers. The formation of hexagonal AlN during the nitriding treatment leads to an increase in hardness of about 920 – 980 HV 0.025 and to a significant improvement of the wear resistance. Additional annealing tests proved the thermal stability of the nitride layer up to 950 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.