Abstract

In China, vegetable croplands are characterized by intensive fertilization and cultivation, which produce significant nitrogenous gases to the atmosphere. In this study, nitric oxides (NO X) and nitrous oxide (N 2O) emissions from the croplands cultivated with three typical vegetables had been measured in Yangtze River Delta of China from September 2 to December 16, 2006. The NO fluxes varied in the ranges of 1.6–182.4, 1.4–2901 and 0.5–487 ng Nm −2 s −1 with averages of 33.8 ± 44.2, 360 ± 590 and 76 ± 112 (mean ± SD) ngNm −2 s −1 for cabbage, garlic, and radish fields ( n = 88), respectively. N 2O fluxes from the three vegetable fields were found to occur in pulses and significantly promoted by tillage with average values of 5.8, 8.8, and 4.3 ng Nm −2 h −1 for cabbage, garlic, and radish crops, respectively. Influence of vegetables canopy on the NO emission was investigated and quantified. It was found that on cloudy days the canopy can only shield NO emission from croplands soil while on sunny days it cannot only prevent NO emission but also assimilate NO through the open leaves stomas. Multiple linear regression analysis indicated that soil temperature was the most important factor in controlling NO emission, followed by fertilizer amount and gravimetric soil water content. About 1.2%, 11.56% and 2.56% of applied fertilizers N were emitted as NO–N and N 2O–N from the cabbage, garlic and radish plots, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.