Abstract

We previously showed that nitric oxide (NO) induces overexpression of cyclooxygenase-2 (COX-2) and production of prostaglandin E(2) in cancer cells. Here, we investigated the mechanisms by which NO induces COX-2 expression in cancer cells. We found that the cAMP-response element (CRE) is a critical factor in NO-induced COX-2 expression in all cells tested. We found that in cancer cells, three transcription factors (TFs) - cAMP response element-binding protein (CREB), activating transcription factor-2 (ATF-2) and c-jun, bound the CRE in the COX-2 promoter, and their activities were increased by addition of the NO donor, S-nitroso-N-acetyl-D,L-penicillamine (SNAP). NO-induced activation of soluble guanylate cyclase (sGC), p38 and c-Jun NH(2)-terminal kinase (JNK) upregulated the three TFs, leading to COX-2 overexpression. Addition of dibutyryl-cGMP (db-cGMP) induced COX-2 expression in a manner similar to SNAP; this induction was blocked by a p38 inhibitor (SB202190), but not by a JNK inhibitor (SP600125). NO-induced cGMP was found to activate CREB and ATF-2 in a p38, but not c-jun-dependent manner, while NO induced JNK in a cGMP-independent manner, leading to subsequent activation of c-jun and ATF-2. These results suggest that the low concentrations of endogenous NO present in cancer cell may induce the expression of many genes, including COX-2, which promotes the growth and survival of tumor cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call