Abstract

Ever since the days of NO being proclaimed as the “molecule of the year”, the molecular effects of this miracle gas on the globins have remained elusive. While its vasodilatory role in the cardiopulmonary system and the vasculature is well recognized, the molecular underpinnings of the NO–globin axis are incompletely understood. We show, by transwell co-culture of nitric oxide (NO) generating, HEK eNOS/nNOS cells, and K562 erythroid or C2C12 muscle myoblasts, that low doses of NO can effectively insert heme into hemoglobin (Hb) and myoglobin (Mb), making NO not only a vasodilator, but also a globin heme trigger. We found this process to be dependent on the NO flux, occurring at low NO doses and fading at higher doses. This NO-triggered heme insertion occurred into Hb in just 30 min in K562 cells and into muscle Mb in C2C12 myoblasts between 30 min and 1 h, suggesting that the classical effect of NO on upregulation of globin (Hb or Mb) is just not transcriptional, but may involve sufficient translational events where NO can cause heme-downloading into the apo-globins (Hb/Mb). This effect of NO is unexpected and highlights its significance in maintaining globins in its heme-containing holo-form, where such heme insertions might be required in the circulating blood or in the muscle cells to perform spontaneous functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call