Abstract
BackgroundDue to the pleiotropic effects of nitric oxide (NO) within the lungs, it is likely that NO is a significant factor in the pathogenesis of chronic obstructive pulmonary disease (COPD). The aim of this study was to test for association between single nucleotide polymorphisms (SNPs) in three NO synthase (NOS) genes and lung function, as well as to examine gene expression and protein levels in relation to the genetic variation.MethodsOne SNP in each NOS gene (neuronal NOS (NOS1), inducible NOS (NOS2), and endothelial NOS (NOS3)) was genotyped in the Lung Health Study (LHS) and correlated with lung function. One SNP (rs1800779) was also analyzed for association with COPD and lung function in four COPD case–control populations. Lung tissue expression of NOS3 mRNA and protein was tested in individuals of known genotype for rs1800779. Immunohistochemistry of lung tissue was used to localize NOS3 expression.ResultsFor the NOS3 rs1800779 SNP, the baseline forced expiratory volume in one second in the LHS was significantly higher in the combined AG + GG genotypic groups compared with the AA genotypic group. Gene expression and protein levels in lung tissue were significantly lower in subjects with the AG + GG genotypes than in AA subjects. NOS3 protein was expressed in the airway epithelium and subjects with the AA genotype demonstrated higher NOS3 expression compared with AG and GG individuals. However, we were not able to replicate the associations with COPD or lung function in the other COPD study groups.ConclusionsVariants in the NOS genes were not associated with lung function or COPD status. However, the G allele of rs1800779 resulted in a decrease of NOS3 gene expression and protein levels and this has implications for the numerous disease states that have been associated with this polymorphism.
Highlights
Due to the pleiotropic effects of nitric oxide (NO) within the lungs, it is likely that NO is a significant factor in the pathogenesis of chronic obstructive pulmonary disease (COPD)
We examined the relationship of rs1800779 to forced expiratory volume in 1 second (FEV1) % predicted in the four replication populations but there was no significant association with lung function in either the cases or the controls (Table 6)
We were able to demonstrate that the rs1800779 single nucleotide polymorphisms (SNPs) has a functional effect on the expression of the NOS3 gene and this has implications for the numerous disease states that have been associated with this polymorphism [24,25,26,27]
Summary
Due to the pleiotropic effects of nitric oxide (NO) within the lungs, it is likely that NO is a significant factor in the pathogenesis of chronic obstructive pulmonary disease (COPD). The aim of this study was to test for association between single nucleotide polymorphisms (SNPs) in three NO synthase (NOS) genes and lung function, as well as to examine gene expression and protein levels in relation to the genetic variation. Nitric oxide (NO) is a molecule that is involved in many physiological and pathological pathways and can have either beneficial or detrimental effects. There are three known NOS isoforms: neuronal NOS (NOS1), inducible NOS (NOS2), and endothelial NOS (NOS3). NOS1 can be found in neurons and endothelial cells in the lung [2], while NOS3 is found in bronchiolar epithelial cells and the endothelium [3,4]. NOS2 is expressed in the human airway epithelium [5], lung endothelium [2], and alveolar macrophages [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.