Abstract

Extracellular calcium (Ca²⁺(e))-induced relaxation of isolated, phenylephrine (PE)-contracted mesenteric arteries is dependent on an intact perivascular sensory nerve network that expresses the Ca²⁺-sensing receptor (CaSR). Activation of the receptor stimulates an endocannabinoid vasodilator pathway, which is dependent on cytochrome P450 and phospholipase A₂ but largely independent of the endothelium. In the present study, we determined the role of nitric oxide (NO) in perivascular nerve CaSR-mediated relaxation of PE-contracted mesenteric resistance arteries isolated from mice. Using automated wire myography, we studied the effects of NO synthase (NOS) gene knockout (NOS(-/-)) and pharmacologic inhibition of NOS on Ca²⁺(e)-induced relaxation of PE-contracted arteries. Endothelial NOS knockout (eNOS(-/-)) upregulates but neuronal NOS knockout (nNOS(-/-)) downregulates CaSR expression. NOS(-/-) reduced maximum Ca²⁺(e)-induced relaxation with no change in EC₅₀ values, with eNOS(-/-) having the largest effect. The responses of vessels to calindol and Calhex 231 indicate that the CaSR mediates relaxation. L-N⁵-(1-iminoethyl)-ornithine reduced Ca²⁺(e)-induced relaxation of PE-contracted arteries from C57BL/6 control mice by ≈38% but had a smaller effect in vessels from eNOS(-/-) mice. 7-Nitroindazole had no significant effect on relaxation of arteries from NOS(-/-) mice, but both N(G)-nitro-L-arginine methylester and N(G)-monomethyl-L-arginine significantly reduced the relaxation maxima in all groups. Interestingly, the nNOS-selective inhibitor S-methyl-L-thiocitrulline significantly increased the EC₅₀ value by ≈60% in tissues from C57BL/6 mice but reduced the maximum response by ≈80% in those from nNOS(-/-) mice. Ca²⁺-activated big potassium channels play a major role in the process, as demonstrated by the effect of iberiotoxin. We conclude that CaSR signaling in mesenteric arteries stimulates eNOS and NO production that regulates Ca²⁺(e)-induced relaxation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.