Abstract

Nitric oxide has emerged as an important mammalian metabolic intermediate involved in critical physiological functions such as vasodilation, neuronal transmission, and cytostasis. Nitric oxide synthase (NOS) catalyzes the five-electron oxidation of L-arginine to citrulline and nitric oxide. Cosubstrates for the reaction include molecular oxygen and NADPH. In addition, there is a requirement for tetrahydrobiopterin. NOS also contains the coenzymes FAD and FMN and demonstrates significant amino acid sequence homology to NADPH-cytochrome P-450 reductase. Herein we report the identification of the inducible macrophage NOS as a cytochrome P-450 type hemoprotein. The pyridine hemochrome assay showed that the NOS contained a bound protoporphyrin IX heme. The reduced carbon monoxide binding spectrum shows an absorption maximum at 447 nm indicative of a cytochrome P-450 hemoprotein. A mixture of carbon monoxide and oxygen (80%/20%) potently inhibited the reaction (73-79%), showing that the heme functions directly in the oxidative conversion of L-arginine to nitric oxide and citrulline. Additionally, partially purified NOS from rat cerebellum was inhibited by CO, suggesting that this isoform may also contain a P-450-type heme. NOS is the first example of a soluble cytochrome P-450 in eukaryotes. In addition, the presence of FAD and FMN indicates that this is the first catalytically self-sufficient mammalian P-450 enzyme, containing both a reductase and a heme domain on the same polypeptide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.