Abstract

The effects of nitric oxide synthase inhibition on brain acidosis, regional cortical blood flow (rCBF), and NADH redox state were examined using in vivo fluorescence imaging during four 15-min periods of moderate focal cerebral ischemia, each separated by three 5-min reperfusion periods followed by a final 3-h reperfusion period. Fasted rabbits under 1.5% halothane were divided into six groups of seven animals each: nonischemic controls, ischemic controls, and the following drug groups receiving NG-nitro-L-arginine methyl ester (L-NAME) intravenously 20 min before repetitive ischemia (as follows: 0.1 mg/kg, 1 mg/kg, 10 mg/kg, and 1 mg/kg + 5 mg/kg L-arginine). L-NAME at 0.1 and 1 mg/kg prevented the development of significant brain acidosis throughout the four ischemic insults. L-NAME at 10 mg/kg reduced preischemic rCBF by 21% (P < 0.05) and did not mitigate brain acidosis after the third and fourth ischemic insults. Brain intracellular pH returned toward baseline after the 3-h final reperfusion in all groups. NADH redox state was significantly (P < 0.05) elevated from baseline controls in all groups during the last three ischemic insults. During the final reperfusion period, NADH redox state returned toward baseline values only in the 0.1 mg/kg L-NAME and ischemic control group. In conclusion, low-dose L-NAME attenuated brain acidosis independent from rCBF changes during intermittent, moderate focal cerebral ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.