Abstract

Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and transforming growth factor-beta(1) (TGF-beta(1)) mRNA increase in rat skeletal muscle in response to a single acute exercise bout. Nitric oxide (NO) is released locally by muscle vascular endothelium and muscle fibers during exercise, contributes to the blood flow response to exercise, and regulates mitochondrial respiration. We hypothesized that a reduction in NO production, via NO synthase inhibition, would demonstrate a link between NO and the VEGF, bFGF, and TGF-beta(1) gene responses to exercise. To investigate this hypothesis, 9-wk-old female Wistar rats were divided into eight treatment groups (n = 6 each): 1) saline + rest, 2) saline + exercise, 3) 30 mg/kg N(omega)-nitro-L-arginine methyl ester (L-NAME, a known NOS inhibitor) + rest, 4) 30 mg/kg L-NAME + exercise, 5) 300 mg/kg L-NAME + rest, 6) 300 mg/kg L-NAME + exercise, 7) 300 mg/kg N(omega)-nitro-D-arginine methyl ester (D-NAME, inactive enantiomer of L-NAME) + rest, and 8) 300 mg/kg D-NAME + exercise. Exercise consisted of 1 h of running at 20 m/min on a 10 degrees incline. VEGF, TGF-beta(1), and bFGF mRNA from left gastrocnemius were analyzed by quantitative Northern blot. Submaximal exercise for 1 h increased VEGF mRNA 4.2-fold and TGF-beta(1) mRNA 1.5-fold in untreated rats but did not increase bFGF mRNA. The exercise-induced increase in VEGF mRNA was attenuated approximately 50% by 30 and 300 mg/kg L-NAME; the TGF-beta(1) mRNA increase was unaffected by 300 mg/kg L-NAME. In addition, 300 mg/kg D-NAME had no effect on the exercise-induced increase in VEGF mRNA. Administration of 300 mg/kg L-NAME had no effect on bFGF mRNA. These findings suggest that NO is important in the regulation of the VEGF gene response to exercise through increases in VEGF transcription or by increases in the VEGF mRNA half-life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.