Abstract

Nitric oxide (NO) is a diffusible signaling molecule with evolutionarily conserved roles in neural plasticity. Prominent expression of NO synthase (NOS) in the primary olfactory centers of mammals and insects lead to the notion of a special role for NO in olfaction. In insects, however, NOS is also strongly expressed in non-olfactory chemo-tactile centers of the thoracic nerve cord. The functional significance of this apparent association with various sensory centers is unclear, as is the extent to which it occurs in other arthropods. We therefore investigated the expression of NOS in the pereopod ganglia of crayfish (Pacifastacus lenisculus and Procambarus clarkii). Conventional NADPH diaphorase (NADPHd) staining after formaldehyde fixation gave poor anatomic detail, whereas fixation in methanol/formalin (MF-NADPHd) resulted in Golgi-like staining, which was supported by immunohistochemistry using NOS antibodies that recognize a 135-kDa protein in crayfish. MF-NADPHd revealed an exceedingly dense innervation of the chemo-tactile centers. As in insects, this innervation was provided by a system of prominent intersegmental neurons. Superimposed on a putatively conserved architecture, however, were pronounced segmental differences. Strong expression occurred only in the anterior three pereopod ganglia, correlating with the presence of claws on pereopods one to three. These clawed pereopods, in addition to their role in locomotion, are crucially involved in feeding, where they serve both sensory and motor functions. Our findings indicate that strong expression of NOS is not a universal feature of primary sensory centers but instead may subserve a specific requirement for sensory plasticity that arises only in particular behavioral contexts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.