Abstract

Gene therapy aims to intervene in a disease process by transfer and expression of specific genes in a target tissue or organ. Cardiovascular gene therapy in humans remains in its infancy, but in the last decade, experimental gene transfer has emerged as a powerful biological tool to investigate the function of specific genes in vascular disease pathobiology. Nitric oxide synthases, the enzymes that produce nitric oxide, have received considerable attention as potential candidates for vascular gene therapy because nitric oxide has pleiotropic antiatherogenic actions in the vessel wall, and abnormalities in nitric oxide biology are apparent very early in the atherogenic process. In this article, we review the use of nitric oxide synthases in experimental vascular gene therapy and assess the utility of these approaches for investigating the role of nitric oxide in atherosclerosis and their potential for human gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.