Abstract

In the heart, the parasympathetic neurotransmitter acetylcholine (ACh) reduces the force of contraction. Although the effect of ACh can be partly explained by an inhibition of adenylyl cyclase, some of the effects of ACh may also be mediated via stimulation of nitric oxide synthase (NOS) and production of guanosine 3', 5'-cycle monophosphate (cGMP). NOS inhibitors can prevent the negative chronotropic effect of ACh on spontaneously beating cardiomyocytes and suppress the inhibition of the L-type calcium current (ICa) by ACh in sinoatrial myocytes. This pathway may be relevant not only to the chronotropic effect of ACh but also to its inotropic effect, because ACh, NO, and cGMP regulate the force of contraction and ICa in the cardiac ventricle. Here we report the effects of L-arginine (L-Arg), the substrate of NOS, and NG-monomethyl-L-arginine (L-NMMA) and NG-nitro-L-arginine (L-NNA), two NOS inhibitors, on muscarinic effects in the cardiac ventricle. We found that L-Arg, L-NMMA, and L-NNA have no effect on the muscarinic inhibition of ICa in isolated frog myocytes. In addition, these compounds have no significant effects on basal ICa or beta-adrenergic stimulation of ICa. L-Arg and its analogues did not change the negative inotropic effect of ACh in frog ventricular fibers. Basal active tension and the positive inotropic effect of isoproterenol, a beta-adrenergic agonist, also were unaffected. We conclude that NOS in not involved in muscarinic inhibition of ICa in isolated from ventricular myocytes or the negative inotropic effect of ACh in the frog ventricle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call