Abstract

Sodium nitroprusside spontaneously breaks down in solution to produce the vasodilator nitric oxide. In many cell types, this stimulates the cytosolic form of the enzyme guanylate cyclase, resulting in the elevation of cyclic GMP (cGMP). We have investigated the effect of sodium nitroprusside on the generation of cGMP in primary human thyrocytes and the SV40-transfected human thyroid cell line SGHTL-189. A dose-dependent increase in cGMP was obtained and the maximum response was observed with concentrations above 10 microM sodium nitroprusside in both cell types. Methylene blue (50 microM) had no significant effect on basal cGMP production but inhibited the effect of sodium nitroprusside at all concentrations tested, thus demonstrating that the effect was due to nitric oxide. Sodium nitroprusside had no effect on cyclic AMP (cAMP) production in these cells. TSH at 100 and 1000 microU/ml significantly stimulated the production of cAMP, but not that of cGMP, in primary human thyrocytes. Sodium nitroprusside had no significant effect on basal or TSH-stimulated triiodothyronine secretion in primary human thyrocytes. Forskolin (10 microM) significantly stimulated cAMP production in both primary thyrocytes and SGHTL-189 cells. Although forskolin had no significant effect on basal cGMP production, sodium nitroprusside-stimulated cGMP production was significantly reduced by forskolin. However, this inhibitory effect was not related to the production of cAMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.