Abstract

Nitric oxide (NO) molecular messenger can reverse the multidrug resistance (MDR) effect of cancer cells through reducing P-glycoprotein (P-gp) expression, beneficial for creating a favorable microenvironment for the treatment of doxorubicin (Dox)-resistant cancer cells. Development of sophisticated nanosystems to programmably release NO and Dox becomes an efficient strategy to overcome the MDR obstacles and achieve promising therapeutic effects in Dox-resistant cancer. Herein, a NO stimulated nanosystem was designed to engineer a significant time gap between NO and Dox release, promoting MDR cancer therapy. A o-phenylenediamine-containing lipid that can hydrolyze in response to NO was embedded in the phospholipid bilayer structure of liposome to form NO-responsive liposome, which could further encapsulate l-arginine (l-Arg)/Dox-loaded gold@copper sulfide yolk-shell nanoparticls (ADAu@CuS YSNPs) to form ADLAu@CuS YSNPs. Under 808 nm laser irradiation, the unique resonant energy transfer (RET) process and reactive oxygen species (ROS) generation in the confined space of ADLAu@CuS YSNPs could effectively convert l-Arg into NO, regionally destabilizing the phospholipid bilayer structure, as a result of NO release. However, at this early stage Dox could not be released from YSNPs due to the molecular scaffold limit. As the NO release progressed, the NO-responsive liposome layer was deteriorated more severely, allowing Dox to escape. This NO and Dox sequential release of ADLAu@CuS YSNPs could significantly inhibit P-gp expression and enhance Dox accumulation in Dox-resistant MCF-7/ADR cells, leading to promising in vitro and in vivo therapeutic effects and presenting their great potential for MDR cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call