Abstract

Age‐related changes in the transcriptome lead to memory impairment. Several genes have been identified to cause age‐dependent memory impairment (AMI) by changes in their expression, but genetic screens to identify genes critical for AMI have not been performed. The fruit fly is a useful model for studying AMI due to its short lifespan and the availability of consistent techniques and environments to assess its memory ability. We generated a list of candidate genes that act as AMI regulators by performing a comprehensive analysis of RNAsequencing data from young and aged fly heads and genome‐wide RNAi screening data to identify memory‐regulating genes. A candidate screen using temporal and panneuronal RNAi expression was performed to identify genes critical for AMI. We identified the guanylyl cyclase β‐subunit at 100B (gycβ) gene, which encodes a subunit of soluble guanylyl cyclase (sGC), the only intracellular nitric oxide (NO) receptor in fruit flies, as a negative regulator of AMI. RNAi knockdown of gycβ in neurons and NO synthase (NOS) in glia or neurons enhanced the performance of intermediate‐term memory (ITM) without apparent effects on memory acquisition. We also showed that pharmacological inhibition of sGC and NOS enhanced ITM in aged individuals, suggesting the possibility that age‐related enhancement of the NO‐sGC pathway causes memory impairment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.