Abstract
The highly reactive diatomic gas molecule nitric oxide (NO) is produced by eukaryotes and bacteria to promote short-range and transient signaling within and between neighboring cells. Despite its importance as an inter-kingdom and intra-bacterial signaling molecule, the bacterial response and the underlying components of the signaling pathways are poorly characterized. The environmental bacterium Legionella pneumophila forms biofilms and replicates in protozoan and mammalian phagocytes. L. pneumophila harbors three putative NO receptors, one of which crosstalks with the Legionella quorum sensing (Lqs)-LvbR network to regulate various bacterial traits, including virulence and biofilm architecture. In this study, we used pharmacological, genetic, and cell biological approaches to assess the response of L. pneumophila to NO and to demonstrate that the putative NO receptors are implicated in NO detection, bacterial replication in phagocytes, intracellular phenotypic heterogeneity, and biofilm formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.