Abstract

To restore the disordered endogenous gas levels is an efficient alternative for the treatment of rheumatoid arthritis (RA). Both insufficient hydrogen sulfide (H2 S) and excessive nitric oxide (NO) contribute to synovial inflammation. Herein, a new block polymer PEG10 -b-PNAPA30 -b-PEG10 composed of an NO-responsive monomer and a cysteine-triggered H2 S donor, which can simultaneously scavenge NO and release therapeutic H2 S for RA treatment, is reported. In vitro experiments demonstrate that the polymer exhibits a synergistic effect on suppressing reactive oxygen species levels and pro-inflammatory cytokine production via NF-κB signaling pathway. It leads to the polarization of macrophages from M1 to M2 phenotype. Moreover, the released H2 S further restrains NO production by suppressing the expression of iNOS. In vivo experiments with an RA rat model show that the system markedly mitigates the synovial inflammation, osteoporosis, and clinical symptoms of RA rats, which is attributed to the combination therapy of H2 S release and NO depletion. This work provides new insight into the synergistic treatment of RA and endogenous gas-related diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.