Abstract

Many photosynthetic autotrophs have evolved responses that adjust their metabolism to limitations in nutrient availability. Here we report a detailed characterization of the remodeling of photosynthesis upon sulfur starvation under heterotrophy and photo-autotrophy in the green alga (Chlamydomonas reinhardtii). Photosynthetic inactivation under low light and darkness is achieved through specific degradation of Rubisco and cytochrome b 6 f and occurs only in the presence of reduced carbon in the medium. The process is likely regulated by nitric oxide (NO), which is produced 24 h after the onset of starvation, as detected with NO-sensitive fluorescence probes visualized by fluorescence microscopy. We provide pharmacological evidence that intracellular NO levels govern this degradation pathway: the addition of a NO scavenger decreases the rate of cytochrome b 6 f and Rubisco degradation, whereas NO donors accelerate the degradation. Based on our analysis of the relative contribution of the different NO synthesis pathways, we conclude that the NO2-dependent nitrate reductase-independent pathway is crucial for NO production under sulfur starvation. Our data argue for an active role for NO in the remodeling of thylakoid protein complexes upon sulfur starvation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.