Abstract

Nitric oxide (NO) leads to neuronal death in ischemia/reperfusion (I/R), including stroke. Here, we examined the NO-induced vulnerability of neurons and lactate production by astrocytes in stroke-prone spontaneously hypertensive rats (SHRSP) in vitro. Neuronal cell death induced by the NO donor sodium nitroprusside (SNP) was significantly increased in SHRSP compared with Wistar kyoto rats (WKY). Furthermore, levels of lactate production by astrocytes were significantly reduced in SHRSP compared with WKY. At the same time, expressions of the lactate dehydrogenase (LDH) and monocarboxylate transporter 1 (MCT1) genes were significantly decreased by SNP in SHRSP compared with WKY. Moreover, in astrocytes isolated from SHRSP, the gene expression of isoforms of 6-phosphofracto-2-kinase (PFK2), a master regulator of glycolysis, namely PFK2.1, PFK2.2, PFK2.3, and PFK2.4, had deteriorated significantly. Notably, the SNP-evoked gene expression of PFK2.4 was lower in astrocytes of SHRSP than those of WKY. These results indicated that the neurons and astrocytes of SHRSP differed in responsiveness to SNP from those of WKY. This difference might explain the deficiency of energy and vulnerability to SNP of the neurons of SHRSP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call