Abstract

The synthesis, structural characterization, and NO reactivity of carboxylate-bridged dimetallic complexes were investigated. The diiron(II) complex [Fe(2)(mu-O(2)CAr(Tol))(4)(Ds-pip)(2)] (1), where O(2)CAr(Tol) = 2,6-di(p-tolyl)benzoate and Ds-pip = dansyl-piperazine, was prepared and determined by X-ray crystallography to have a paddlewheel geometry. This complex reacts with NO within 1 min with a concomitant 4-fold increase in fluorescence emission intensity ascribed to displacement of Ds-pip. Although the diiron complex reacts with NO, as revealed by infrared spectroscopic studies, its sensitivity to dioxygen renders it unsuitable as an atmospheric NO sensor. The air-stable dicobalt(II) analogue was also synthesized and its reactivity investigated. In solution, the dicobalt(II) complex exists as an equilibrium between paddlewheel [Co(2)(mu-O(2)CAr(Tol))(4)(Ds-pip)(2)] (2) and windmill [Co(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(Ds-pip)(2)] (3) geometric isomers. Conditions for crystallizing pure samples of each of these isomers are described. Reaction of 2 with excess NO proceeds by reductive nitrosylation giving [Co(mu-O(2)CAr(Tol))(2)(NO)(4)] (5), which is accompanied by release of the Ds-pip fluorophore that is N-nitrosated in the process. This reaction affords an overall 9.6-fold increase in fluorescence emission intensity, further demonstrating the potential utility of ligand dissociation as a strategy for designing fluorescence-based sensors to detect nitric oxide in a variety of contexts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.