Abstract

Nitric oxide (NO), a vital cell-signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen-activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd(2+) ) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase-3-like protease activation was detected after Cd(2+) treatment. This was further confirmed with a caspase-3 substrate assay. Cd(2+) -induced caspase-3-like activity was inhibited in the presence of the NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), suggesting that NO mediated caspase-3-like protease activation under Cd(2+) stress conditions. Pretreatment with cPTIO effectively inhibited Cd(2+) -induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd(2+) -induced caspase-3-like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase-3-like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd(2+) -induced Arabidopsis PCD by promoting MPK6-mediated caspase-3-like activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.