Abstract

The perifornical-lateral hypothalamic area (PF-LHA) is a major wake-promoting structure. It predominantly contains neurons that are active during behavioral and cortical activation. PF-LHA stimulation produces arousal and PF-LHA lesions produce somnolence. Nitric oxide (NO) is a gaseous neurotransmitter that has been implicated in the regulation of multiple pathological and physiological processes including the regulation of sleep. NO levels are higher in the cortex and in the basal forebrain (BF) during arousal. In this study we determined whether NO levels increase in the PF-LHA during prolonged arousal and whether increased NO modulates the discharge activity of PF-LHA neurons. Experiments were conducted during lights-on phase between 8.00 and 20.00 h (lights-on at 8.00 h). First, we quantified levels of NO metabolites, NO 2 − and NO 3 − (collectively called NOx −) in the microdialysis dialysates collected from the PF-LHA during baseline (undisturbed rats), 6 h of sleep deprivation (SD), and recovery after SD. We further determined the effects of a NO donor, NOC-18, on the discharge activity of PF-LHA neurons in urethane-anesthetized rats. Overall, SD significantly affected NOx − production in the PF-LHA (one way repeated measures ANOVA, F=7.827, P=0.004). The levels of NOx − increased progressively in animals that were subjected to prolonged arousal as compared to the undisturbed predominantly sleeping animals and decreased during the recovery period. Local application of NOC-18 significantly suppressed the discharge of PF-LHA neurons including a majority of stimulus-on neurons or neurons exhibiting activation during electroencephalogram (EEG) desynchronization. The findings of this study suggest that in the PF-LHA, NO production is elevated during prolonged waking and that NO exerts predominantly inhibitory effects on PF-LHA neurons, especially on those neurons that are active during cortical activation. These findings are consistent with a hypothesis that NO in the PF-LHA plays a role in sleep regulation by inhibiting its neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call