Abstract

Here, we report a comparative study of nitric oxide oxidation (NOO) reactions of CoIII-peroxo (CoIII-O22-) and Co-nitrosyl ({CoNO}8) complexes bearing the same N4-donor ligand (HMTETA) framework. In this regard, we prepared and characterized two new [(HMTETA)CoIII(O22-)]+ (2, S = 2) and [(HMTETA)Co(NO)]2+ (3, S = 1) complexes from [(HMTETA)CoII(CH3CN)2]2+ (1). Both complexes (2 and 3) are characterized by different spectroscopic measurements, including their DFT-optimized structures. Complex 2 produces CoII-nitrato [(HMTETA)CoII(NO3-)]+ (CoII-NO3-, 4) complex in the presence of NO. In contrast, when 3 reacted with a superoxide (O2•-) anion, it generated CoII-nitrito [(HMTETA)CoII(NO2-)]+ (CoII-NO2-, 5) with O2 evolution. Experiments performed using 18/16O-labeled superoxide (18O2•-/16O2•-) showed that O2 originated from the O2•- anion. Both the NOO reactions are believed to proceed via a presumed peroxynitrite (PN) intermediate. Although we did not get direct spectral evidence for the proposed PN species, the mechanistic investigation using 2,4-di-tert-butylphenol indirectly suggests the formation of a PN intermediate. Furthermore, tracking the source of the N-atom in the above NOO reactions using 15N-labeled nitrogen (15NO) revealed N-atoms in 4 (CoII-15NO3-) and 5 (CoII-15NO2-) derived from the 15NO moiety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.