Abstract
A permissive role of nitric oxide (NO) in endothelial cell migration and angiogenesis promoted by vascular endothelial growth factor (VEGF), endothelin, and substance P has previously been established. The present studies were designed to examine the mechanism(s) involved in the NO effect on focal adhesions. Time-lapse videomicroscopy of human umbilical vein endothelial cells (HUVECs) plated on the silicone rubber substrate revealed that unstimulated cells were constantly remodeling the wrinkling pattern, indicative of changing tractional forces. Application of NO donors reversibly decreased the degree of wrinkling, consistent with the release of tractional forces exerted by focal adhesions and stress fibers. Morphometric and immunocytochemical analyses showed that NO inhibited adhesion and spreading of HUVECs and attenuated recruitment of paxillin to focal adhesions. NO also had a profound dose-dependent effect on the formation of stress fibers by HUVECs. De novo formation of focal adhesions in HUVECs was significantly diminished in the presence of NO donors. Migration of HUVECs showed an absolute requirement for the functional NO synthase. NO donors did not interfere with focal adhesion kinase recruitment to focal adhesions but affected the state of its tyrosine phosphorylation, as judged from the results of immunoprecipitation and immunoblotting experiments. Videomicroscopy of HUVECs presented with VEGF in a micropipette showed that the rate of cell migration was slowed down by NO synthase inhibition as well as by inhibition of tyrosine phosphorylation. Collectively, these data indicate that NO reversibly releases tractional forces exerted by spreading endothelial cells via interference with the de novo formation of focal adhesions, tyrosine phosphorylation of components of focal adhesion complexes, and assembly of stress fibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.