Abstract
Photodynamic therapy (PDT) of cancer is a very promising technique based on the formation of singlet oxygen induced by a sensitizer after irradiation with visible light. The stimulation of tumor growth by nitric oxide (NO) was reported recently, and NO was shown to have a protective effect against PDT-induced tumor death. We investigated a putative direct effect of NO on tumor cell death induced by PDT, using the human lymphoblastoid CCRF-CEM cells and bisulfonated aluminum phthalocyanine (AlPcS2) as a sensitizer. Cells were incubated with AlPcS2 in the presence or absence of NO donors ((Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate, hydroxylamine and S-nitroso-N-acetylpenicillamine) or L-arginine. Under these conditions, in the absence of NO donors or L-arginine the cells died rapidly by apoptosis upon photosensitization. In the presence of NO donors or L-arginine, apoptotic cell death after photosensitization was significantly decreased. Modulation of cell death by NO was not due to S-nitrosylation of caspases and occurred at the level or upstream of caspase-9 processing. The protective effect of NO was reversed by incubating the cells with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of guanylyl cyclase, or with KT5823, an inhibitor of protein kinase G (PKG). Incubation with 8-bromo-cyclic guanosine monophosphate, a membrane permeable cyclic guanosine monophosphate analog, also decreased cell death induced by PDT. Although the protective effect of NO against apoptotic cell death in several models has been attributed to an increase in the expression of heme oxygenase-1, heat shock protein 70 or Bcl-2, this was not the case under our experimental conditions. These results show that NO decreases the extent of apoptotic cell death after PDT treatment through a PKG-dependent mechanism, upstream or at the level of caspase activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.