Abstract

The influence of nitric oxide on acetylcholine release in the ventral striatum was investigated by the push-pull superfusion technique in the conscious, freely moving rat. Superfusion with the nitric oxide donors S-nitroso-N-acetylpenicillamine or with 3-morpholino-sydnonimine caused a pronounced increase in striatal acetylcholine release. This effect was prevented by superfusion with tetrodotoxin. Pre-superfusion with the guanylyl cyclase inhibitor methylene blue abolished the effect of 3-morpholino-sydnonimine. Superfusion of the ventral striatum with the guanylyl cyclase inhibitor LY83583 decreased acetylcholine release by 60% of basal release, whereas the less specific guanylyl cyclase inhibitor methylene blue was ineffective in this respect. Superfusion of the ventral striatum with inhibitors of nitric oxide synthase also led to different effects on basal acetylcholine release. Superfusion with L-NG-methylarginine did not influence basal acetylcholine release, whereas superfusion with L-NG-nitroarginine or with L-NG-nitroarginine methyl ester led to a substantial decrease in acetylcholine output, the latter compound being more effective. The effect of L-NG-nitroarginine was abolished by simultaneous superfusion with L-arginine. The effects of NO donors and of LY83583 suggest that NO increases acetylcholine release, probably by a cGMP-dependent mechanism. The effectiveness of nitric oxide synthase inhibitors shows that the activity of striatal neurons is under the permanent influence of nitric oxide, that leads, via a direct or indirect mechanism, to continuous enhancement of acetylcholine release. In conclusion, our findings suggest that NO synthesized in the ventral striatum acts as an intracellular messenger which modulates acetylcholine release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.