Abstract

Cells of the developing lung express the constitutive nitric oxide synthases (NOSs) I and III. The developmental importance of these enzymes is largely unknown, although a role for nitric oxide (NO) in the regulation of pulmonary blood flow at birth is established. Known effects of NO on transcription factors, apoptosis, and cellular proliferation, plus the time and spatial limits of pulmonary NOS expression, suggest that NO might influence lung development. We tested the potential of NO to modulate lung branching morphogenesis by exposing lung explants from gestational day 13 rat fetuses to varying doses of several NO donors (NONO-ate). We counted the number of airway branches that were added between the first and 72nd h of culture. NO released only from a NONO-ate with a long half-life [(Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]-diazen-1-ium-1,2-diolate-NO], increased branching in ambient O(2) by twofold. The NO effect was not mimicked with a cyclic guanine monophosphate analog; nonspecific NOS inhibitors in millimolar concentrations inhibited branching. We conclude that endogenous and exogenous NO can modulate branching morphogenesis in the rat lung.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call