Abstract

Vanadium (V) induced hazardous effects posturing a serious concern on crop production as well as food security. However, the nitric oxide (NO)-mediated alleviation of V-induced oxidative stress in soybean seedlings is still unknown. Therefore, this research was designed to explore the effects of exogenous NO to mitigate the V-induced phytotoxicity in soybean plants. Our upshots disclosed that NO supplementation considerably improved the plant biomass, growth, and photosynthetic attributes by regulating the carbohydrates, and plants biochemical composition, which further improved the guard cells, and stomatal aperture of soybean leaves. Additionally, NO regulated the plant hormones, and phenolic profile which restricted the V contents absorption (65.6%), and translocation (57.9%) by maintaining the nutrient acquisition. Furthermore, it detoxified the excessive V contents, and upsurged the antioxidants defense mechanism to lower the MDA, and scavenge ROS production. The molecular analysis further verified the NO-based regulation of lipid, sugar production, and degradation as well as detoxification mechanism in the soybean seedlings. Exclusively, we elaborated very first time the behind mechanism of V-induced oxidative stress alleviation by exogenous NO, hence illustrating the NO supplementation role as a stress alleviating agent for soybean grown in V contaminated areas to elevate the crop development and production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call