Abstract

Nitric oxide (NO) has been proposed to contribute to the development of hyperalgesia by activating the NO/guanosine 3',5'-cyclic monophosphate (cGMP) signal transduction pathway in the spinal cord. We have examined the effects of NO on the responses of primate spinothalamic tract (STT) neurons to peripheral cutaneous stimuli and on the sensitization of STT cells following intradermal injection of capsaicin. The NO level within the spinal dorsal horn was increased by microdialysis of a NO donor, 3-morpholinosydnonimine (SIN-1). SIN-1 enhanced the responses of STT cells to both weak and strong mechanical stimulation of the skin. This effect was preferentially on deep wide dynamic range STT neurons. The responses of none of the neurons tested to noxious heat stimuli were significantly changed when SIN-1 was administered. Intradermal injection of capsaicin increased dramatically the content of NO metabolites, NO-2/NO-3, within the dorsal horn. This effect was attenuated by pretreatment of the spinal cord with a nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). Sensitization of STT cells induced by intradermal injection of capsaicin was also prevented by pretreatment of the dorsal horn with the NOS inhibitors, L-NAME or 7-nitroindazole. Blockade of NOS did not significantly affect the responses of STT cells to peripheral stimulation in the absence of capsaicin injection. The data suggest that NO contributes to the development and maintenance of central sensitization of STT cells and the resultant mechanical hyperalgesia and allodynia after peripheral tissue damage or inflammation. NO seems to play little role in signaling peripheral stimuli under physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.