Abstract

Omental adipose stromal cells (O-ASC) are a multipotent population of mesenchymal stem cells contained in the omentum tissue that promote endometrial and ovarian tumor proliferation, migration, and drug resistance. The mechanistic underpinnings of O-ASCs' role in tumor progression and growth are unclear. Here, we propose a novel nitric oxide (NO)-mediated metabolic coupling between O-ASCs and gynecologic cancer cells in which O-ASCs support NO homeostasis in malignant cells. NO is synthesized endogenously by the conversion of l-arginine into citrulline through nitric oxide synthase (NOS). Through arginine depletion in the media using l-arginase and NOS inhibition in cancer cells using N(G)-nitro-l-arginine methyl ester (l-NAME), we demonstrate that patient-derived O-ASCs increase NO levels in ovarian and endometrial cancer cells and promote proliferation in these cells. O-ASCs and cancer cell cocultures revealed that cancer cells use O-ASC-secreted arginine and in turn secrete citrulline in the microenvironment. Interestingly, citrulline increased adipogenesis potential of the O-ASCs. Furthermore, we found that O-ASCs increased NO synthesis in cancer cells, leading to decrease in mitochondrial respiration in these cells. Our findings suggest that O-ASCs upregulate glycolysis and reduce oxidative stress in cancer cells by increasing NO levels through paracrine metabolite secretion. Significantly, we found that O-ASC-mediated chemoresistance in cancer cells can be deregulated by altering NO homeostasis. A combined approach of targeting secreted arginine through l-arginase, along with targeting microenvironment-secreted factors using l-NAME, may be a viable therapeutic approach for targeting ovarian and endometrial cancers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.