Abstract

Incubation with interferon-gamma has been shown to increase the permeability of cultured monolayers of intestinal epithelial cells. We sought to determine whether this phenomenon is mediated, at least in part, by increased production of nitric oxide. Prospective, controlled, laboratory study. Human intestinal epithelial (Caco-2BBe) cells were grown as monolayers on permeable supports mounted in bicameral chambers. Permeability was assessed by adding fluorescein sulfonic acid (molecular weight = 478 daltons) to the apical compartment and determining the apical-to-basolateral clearance of the probe over a 24-hr period of incubation. Basic science laboratory. The permeability of monolayers to fluorescein sulfonic acid was significantly increased after incubation in the presence of interferon-gamma (250 to 1000 U/mL). The effect of interferon-gamma on permeability was dependent on both the concentration of the cytokine and the duration of exposure to it. Concentrations of nitric oxide oxidation products, nitrite and nitrate, in incubation media were increased after exposure of cells to interferon-gamma. When intestinal epithelial (Caco-2BBe) monolayers were incubated with interferon-gamma in the presence of inhibitors of nitric oxide synthase (NG-monomethyl-L-arginine NG-nitro-L-arginine-methyl ester, or NG-nitro-L-arginine), both of the effects of the cytokine (i.e., increased epithelial permeability and increased production of nitrite/nitrate) were attenuated. These results suggest that upregulation of nitric oxide biosynthesis plays a pivotal role in the increase in permeability of intestinal epithelial (Caco-2BBe) monolayers induced by interferon-gamma. Increased production of nitric oxide induced by proinflammatory cytokines, such as interferon-gamma, may be an important factor contributing to gut mucosal hyperpermeability in sepsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.