Abstract
Experimental evidence suggests that flow-dependent dilatation of conduit arteries is mediated by nitric oxide (NO) and/or prostacyclin. The present study was designed to assess whether NO or prostacyclin also contributes to flow-dependent dilatation of conduit arteries in humans. Radial artery internal diameter (ID) was measured continuously in 16 healthy volunteers (age, 24 +/- 1 years) with a transcutaneous A-mode echo-tracking system coupled to a Doppler device for the measurement of radial blood flow. In 8 subjects, a catheter was inserted into the brachial artery for measurement of arterial pressure and infusion of the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA; 8 mumol/min for 7 minutes; infusion rate, 0.8 mL/min). Flow-dependent dilatation was evaluated before and after L-NMMA or aspirin as the response of the radial artery to an acute increase in flow (reactive hyperemia after a 3-minute cuff wrist occlusion). Under control conditions, release of the occlusion induced a marked increase in radial blood flow (from 24 +/- 3 to 73 +/- 11 mL/min; P < .01) followed by a delayed increase in radial diameter (flow-mediated dilatation; from 2.67 +/- 0.10 to 2.77 +/- 0.12 mm; P < .01) without any change in heart rate or arterial pressure. L-NMMA decreased basal forearm blood flow (from 24 +/- 3 to 13 +/- 3 mL/min; P < .05) without affecting basal radial artery diameter, heart rate, or arterial pressure, whereas aspirin (1 g PO) was without any hemodynamic effect. In the presence of L-NMMA, the peak flow response during hyperemia was not affected (76 +/- 12 mL/min), but the duration of the hyperemic response was markedly reduced, and the flow-dependent dilatation of the radial artery was abolished and converted to a vasoconstriction (from 2.62 +/- 0.11 to 2.55 +/- 0.11 mm; P < .01). In contrast, aspirin did not affect the hyperemic response nor the flow-dependent dilatation of the radial artery. The present investigation demonstrates that NO, but not prostacyclin, is essential for flow-mediated dilatation of large human arteries. Hence, this response can be used as a test for the L-arginine/NO pathway in clinical studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.